Technology Readiness Levels and Maturation Approaches for ISHM Technologies

Ryan Mackey

Jet Propulsion Laboratory

Talk Outline

- Sources of difficulties
 Why is ISHM behind?
- > Overview of regular TRLs
 Are our difficulties unique, or common to all technology efforts?
- > Previous inadequacies: What did we do for software?
 What were the important differences? Are they similar to the ISHM case?
- > ISHM specific changes to TRL
 Proposed new guidelines, as simple and non-invasive as possible
- > Ways to handle the problems
 Near-term missions: Looking ahead five to ten years
- > Example: F-18 Experience
 Applying some of these ideas in a pathfinding experiment

Difficulties of ISHM

- > ISHM technologies are inherently difficult to mature
 - **♦** Treats exceptional behavior by definition
 - ◆ Poorly understood scenarios, few to no examples
 - VERY expensive to test thoroughly
 - Difficult to develop without retrofitting
- > Key needed features of ISHM have never been attempted
- State-of-art examples do not fully enclose ISHM
 - ◆ 777, MER: Complicated system health management, but not truly integrated
 - 777: Driven by maintenance, flight schedules, ground operations
 - MER: Complex reasoning, even on-board behavior modification, but still largely a "learning" system
 - Cassini, other huge robotic spacecraft: Integrated, real-time response, close association with flight controls, but focused on reflexive actions rather than optimizing long-term reliability ("health maintenance")
 - Missing features: Reasoning, system-level management, integration of different functions, flight- and safety-criticality

Maturation Hurdles

- > Five particular hurdles complicate ISHM maturation
 - **♦** Enumerability of states
 - E.g. preparing for and testing multiple hypotheses
 - ♦ The Problem of Nominal
 - What does "Nominal" mean in a grey-scale universe?
 - ◆ Can't Really Test ISHM
 - Ability to test large components, let alone entire systems to failure, is rare
 - Access to Data
 - Chicken and egg problem, usually pushes us towards "retrofit"
 - **♦** Algorithms vs. Models
 - Certify a model? Or re-test the whole system just to reconfigure one element of a model? What to do?

Brief Recap of Ordinary TRL

- Note focus on hardware
- > Key points:
 - Performance Model
 - ◆ Relevant Environment
 - "Stress testing"
 - Meaning of Validation
 - Tightly coupled to performance model

> Other Issues

- ◆ Is "flown in space" equal to "validated in space?"
- ♦ When is a validation considered "full-scale?"

TRL for Software Information Technologies

> What did we need to change?

- **♦** What is *our* "relevant environment?"
 - Most environmental issues have already been addressed by hardware providers
 - IT environment is largely virtual, also much more emphasis on interfaces
- Execution environment? Development environment? Tools?
 - Needed to introduce more of the IT development process
 - Unlike hardware, development methods debugging tools, compilers, etc. –
 have a complex impact on technology performance beyond feasibility
- Interfaces
 - Many more interfaces in information environment
- ◆ Issue of running "on" hardware
 - Is it possible to mature IT without maturing hardware in parallel?
- > What are the big difficulties facing software?
 - **♦** Left to last minute
 - **♦** Huge state-space
 - Complex and badly understood environment

Suggested TRL Changes for ISHM

- > TRL 1 Identified/invented and documented a useful ISHM technology with a qualitative estimate of expected benefit.
 - ◆ Basic functional relationships of a potential application formulated and shown to be compatible with reasonable ISHM architectures and testing requirements.
- > TRL 2 Completed a breakdown of the ISHM technology into its underlying functions and components, and analyzed requirements and interactions with other systems.
 - ◆ Defined and documented requirements for operation, interfaces, and relevant mission phases.
 - ◆ Preliminary design assessment confirmed compatibility with the expected ISHM architecture.
- > TRL 3 Major functions of ISHM technology prototyped to prove scientific feasibility. Successful preliminary tests of critical functions demonstrated and documented, leading to a preliminary performance estimate.
 - Experiments with small representative data sets conducted.
 - ◆ Execution environment and development tools required to conduct these tests, such as modeling tools, defined and documented. ¬

Suggested TRL Changes for ISHM

- > TRL 4 Prototype completed on laboratory hardware and tested in a realistic environment simulation.
 - ◆ Experiments conducted with full-scale problems or data sets in a laboratory environment and results of tests documented.
 - Development ISHM infrastructure completed as needed for the prototype.
 - ◆ A model of ISHM technology performance, adequate for prediction of performance in the intended application, must be documented as a result of these tests.
- > TRL 5 Prototype refined into a system and tested on simulated or flight-equivalent hardware.
 - ◆ Interaction environment, including interfaces to other systems, defined and included in the testing environment.
 - Rigorous stress testing completed in multiple realistic environments and documented.
 - ◆ Performance of the technology in the relevant environment must be documented and shown to be consistent with its performance model.

Suggested TRL Changes for ISHM

- > TRL 6 System ported from breadboard hardware testbeds to flight hardware and tested, along with all other needed components, in realistic simulated environment scenarios.
 - **♦ ISHM** technology tested in complete relevant execution environment.
 - Engineering feasibility fully demonstrated.
- > Early TRL: Need understanding of ISHM architecture
 - **◆ Defines inputs, outputs, timing, and performance requirements**
 - ◆ Integral part of the relevant environment.
- > Relevant environment:
 - Prototype or skeleton ISHM architecture, conforming to the envisioned final application
 - Sensors, computing hardware, message passing, etc. are all defined by that architecture
 - ◆ Stress-testing, for purposes of ISHM, means injection of faults either simulated or real that are considered limiting cases, either in terms of sensitivity, timing, or severity.

 9

Possible Maturation Solutions

- Design for data capture
 - ♦ Few programs currently realize the long-term value of system data
 - ◆ Includes assembly and initial tests, and rarely requires additional sensors
 - ◆ ISHM can also help find and correct errors during vehicle assembly and test
- > Prototype ISHM using mission or vehicle analogues
 - ♦ Useful surrogate systems may exist
 - ♦ Higher re-flight rates and greater fault injection and mission variation
 - ◆ Confront "flight realism" as early as possible
- > Revisit flight-critical system requirements
 - ◆ Not every fault can be anticipated, let alone invoked for testing purposes
 - **♦** More realistic approaches:
 - Verify models through iterative "pathfinder" techniques
 - Certify resilience in case of "broken" ISHM
 - Separate highly critical, reflexive ISHM and test independently
- > Employ model-based engineering (MBE) approaches, autocoding, etc.
 - Model-dependence emphasizes need for accuracy, completeness, and interoperability
 - Autocoding, automatic model abstraction, and model checking simplifies certification
 - Especially valuable as vehicle evolves
- > Construct and maintain a centralized "meta-environment" combining system, subsystem, and component models into a unified simulation
 - Maintains data and domain knowledge
 - Use to test and certify ISHM technologies
 - Contains all "Relevant Environments" for different ISHM components

Mapping Solutions to Problems

	Design for Data Capture	Analogue Missions	Negotiated Flight-Critical Requirements	Autocoding and MBE	Meta- Environmental Models
Difficulty of Full Scale Testing	Gradual testing as system is assembled	Full-scale tests of equivalent system	More realistic testing requirements	Organize unit testing	Provide end-to-end simulation at various levels of detail
Poor Access to Data	Capture data and domain knowledge during assembly and test	Access to extensive data of analogous system			Playback and integration of captured data, synthesis with simulated data
Imprecise Definition of Nominal	Mechanism to gather nominal data from system as it is built	Realistic flight testing, including nominal variation			Collect known variation within nominal
Algorithms vs. Models	Test models against actual data as system is constructed	Test ability to generate and include model updates	Permit certification of models without recertifying entire ISHM	Automated generation and checking of models	
State Explosion			Permit separation of ISHM to allow abstraction, independent certification	Allow optimal model testing using exhaustive or branch/bound methods	Provide and maintain a meaningful abstraction of state space

Example Maturation Effort: F-18 Testbed

- Aircraft validation is one example of a "surrogate spacecraft" for NASA ISHM maturation
 - ◆ REAL TEST DATA, and lots of it
 - > 40 hours of flight data in under three months
 - Simulating challenging situations for ISHM ("breaking stuff") is easier
 - Can include exceptional situations, dummy broken hardware, even real broken hardware
 - Opportunistic scenarios
 - ◆ Aircraft are in some ways a better fit to humanrated flight than robotic spacecraft
 - Crew-rated vehicle
 - Complex environmental interaction
 - Similar time horizons (seconds, not hours)
 - Differences between space and aircraft IT environment can be closed easily
 - Flight computer, OS, databus, power spec all doable
 - Could include additional space hardware, e.g. sensors, true interfaces
 - Cheaper and faster
 - Needed to hit moving targets at NASA

Maturation Experiment: IMS and BEAM

- > IMS: Inductive Monitoring System (ARC)
- > BEAM: Beacon-based Exception Analysis for Multimissions (JPL)
 - ◆ Two separate mid-TRL ISHM technologies
 - Monitoring and data interpretation ("Anomaly Detection")
 - Potential for real-time, on-board operation

> Experiment Objectives:

- ◆ Establish usefulness of F-18 testbed as a technology demonstrator
 - Characterize testbed for developers
 - Generate process of readiness review, integration on aircraft, flight, data recovery, analysis, improvement
 - Understand adaptability of testbed to new hardware
- Deliver hardware and software
- Access to data
 - How long to first flight? Reflight? Quality of data?
 - Other "real world" effects?

F-18 Maturation: Where are we today?

- > F-18 proved to be an effective "icebreaker"
 - Acquired needed hardware
 - ◆ Achieved first data-taking flight in ~ 4 months
 - ◆ Introduced realistic flight issues to developers
 - Power
 - Forces ready-for-flight reviews, etc.
 - Computing hardware constraints
 - Computing hardware idiosyncracies
 - Co-development of software and hardware
 - ◆ Tremendous access to data
 - 23 individual flights, realistic operation
 - Ability to modify, retest, refly without lengthy delays
 - In practice, less than one week between update cycles
 - ◆ Greater access to pilots, aircraft crew chief, etc.
 - ◆ Flight and simulation both available
 - Also access to existing aircraft models (follow-on work)
 - ◆ Tested nominal, in-flight faults, plus new discoveries...

In Conclusion

- > ISHM poses special challenges, but nothing intractable
 - ◆ Know the common problems and plan to counter them early
- > ISHM puts a new spin on the standard TRLs
 - ♦ Similar to "hardware" vs. "software" concerns
 - ◆ Introduced some ISHM specific changes to TRL, keeping as simple and non-invasive as possible
 - Concepts of "Relevant Environment" and "Performance Model" take on more complex meaning
- > Proposed a "covering set" of mitigation approaches
 - ◆ Can solve the worst problems by considering requirements, knowledge capture, modeling, and broader applications of MBE
- > Example: F-18 Experience
 - ◆ Applied four of five mitigating techniques to mature technologies
 - ♦ So far, so good

